|_FEATURES |

Olivier Restif is a
Royal Society Uni-
versity Research
Fellow in the De-
partment of Veteri-
nary Medicine,
University of
Cambridge, Cam-
bridge, United King-
dom;, Juilee Thakar
is Post doctoral fel-
low in the Depart-
ment of Physics,
The Pennsylvania
State University,
University Park, and
Eric Harvill is Asso-
ciate Professor of
Microbiology and
Infectious Disease
in the Department
of Veterinary and
Biomedical Science,
The Pennsylvania
State University,
University Park.

Analysis with Mathematical Models
Provides Insights into Infectious Diseases

Modeling can help address questions about pathogen turnover, immune
system responses, and pathogen spread within populations

Olivier Restif, Juilee Thakar, and Eric T. Harvill

uch of microbiological research
on infectious agents is increas-
ingly specialized and reduction-
ist, viewing the host as a virtually
static environment and thus
sharply narrowing the context of the disease
under study. We advocate an alternative quan-
titative approach that enables investigators to
go beyond their reliance on conventional and
somewhat simplified qualitative terms for de-
scribing  experimental  outcomes—typically,
“gene x is required to control infection y.”
While those conventional approaches give
rise to detailed knowledge of components in-
volved in pathogenesis and host immunity, they
leave important questions unanswered.

these approaches and also take advantage of
opportunities to work with mathematical
modelers when examining system-level as-
pects of infectious diseases. Based on personal
experience, such collaborations can be stimulating
and fun, while providing important insights into
infectious diseases.

How Mathematical Models Can Help in
Analyzing Microbial Findings

Applying mathematical models to results of mi-
crobial experiments allows concepts and tech-
niques from different disciplines to be com-
bined. This multidisciplinary approach can

Here we consider three. (i) What are the
processes such as cell death and divisions
that underlie variations in bacterial num-
bers in sets of experiments involving infec-
tions in animals? (ii) What is the temporal
organization of immune response during an
infection? (iii) How do dynamic responses
within an infected individual relate to the
spread of pathogens between individuals
and within populations?

Examples of recent model-based ap-
proaches that address these three ques-
tions provide a representative sampling of
what several research groups are doing to
examine the responses of complex mam-
malian immune systems to infectious
agents. These mathematical model-aug-
mented studies build on the strengths of
reductionist approaches with which mo-
lecular microbiologists are familiar. It is
our hope that increasing numbers of mi-
crobiologists will recognize the value of

Summary

e Applying mathematical models to results of mi-
crobial experiments enables us to combine con-
cepts and techniques from different disciplines,
translating biological models into equations or
scenarios that computers render dynamic.

e Studies of Salmonella enterica in mice illustrate
how experiments coupled with mathematical
models provide insights into host and pathogens
processes that could not be observed directly.

e A model accurately simulated different immune
modulatory effects and outcomes from infec-
tions by two closely related Bordetella species,
each of which produces similar but distinct vir-
ulence factors.

* Model analysis also helps to explain how the
very similar pathogens, B. pertussis and B. para-
pertussis, manage to coexist—and the latter to
persist— despite wide use of a vaccine to control
whooping cough.
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Features and results from the study on S. enterica serovar Typhimurium within-host dynamics. (A) Schematic view of the mathematical
model: the “virtual mouse” is divided into three interconnected compartments (bloodstream, liver and spleen); the variables are the numbers
of bacteria n, from WITS /in each compartment; the seven parameters to estimate are the division rates (A, and \g), death rates (. and pg)
and immigration rates (6, and 0s) in the liver (L) and spleen (S) as well as the emigration rate (6g) from the organs into the bloodstream. (B)
Average (+ standard deviation) bacterial loads (CFU) at 0.5, 6, 24, and 48 hours postinoculation in the livers of experimental (red bars) and
virtual (gray bars) mice. The gray curve shows the reconstructed dynamics of the average bacterial load of bacteria in the liver. (C)
Distributions of the number of WITS recovered in the livers of experimental (red bars) or virtual (gray bars) mice. In (B) and (C), experimental
distributions (red) were obtained from 20 mice per time point, while theoretical distributions (gray) were obtained from 1000 replicate
stochastic simulations (then scaled down to match experimental numbers in panel C). For more details see Grant et al., PLoS Biology 6:€74,

2008).

provide insights into both the underlying mech-
anisms and the larger-scale implications of par-
ticular microbiological studies, with mathemat-
ical models being a framework that unifies both
qualitative and quantitative information.

Traditionally, experimental results are ana-
lyzed with statistical models that typically estab-
lish quantitative relations between pieces of
data. However, the mechanisms responsible for
these relations cannot be inferred from statisti-
cal analyses. By contrast, mathematical model-
ing begins with specific assumptions about un-
derlying processes, and then assesses how well
those proposed mechanisms can explain the ob-
served data.

Thus, a mathematical model translates a bio-
logical model into equations, which computers
can put into motion and then compare to the
experimental findings. In practice, mathematical
models consist of collections of variables (quan-

tities that vary across time and which are di-
rectly compared to experimental measures),
processes (specific events that affect the vari-
ables and represent typically unobserved biolog-
ical phenomena), and parameters (constant
quantities that measure the rate at which pro-
cesses occur).

Fitting a mathematical model consists of
looking for the values of the parameters that
minimize the difference between experimental
measures and the values of the model variables.
It is then possible to compare different models
based on how well they match the data once
fitted. Naturally, the fact that a given model
reproduces the data perfectly well does not
mean that it provides an accurate representation
of the system—most models are simplistic and
must be interpreted with caution. But this ap-
proach can be useful in at least two ways: first, it
can allow one to reject, or refine, those models
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that do not provide a good fit to the data and,
second, it offers the opportunity to make new
predictions to guide the design of subsequent
experiments.

Indeed, once a mathematical model is fitted to
the data from an experiment, the model can be
used to simulate different experiments, some of
which can be conducted to validate or refine the
model. Thus, mathematical models can be inte-
grated at all stages of the research process to
improve the overall efficiency of research in
microbiology. We recently applied mathematic
modeling techniques to help understand: (i) the
in vivo population dynamics of bacteria during
an acute infection, (ii) the complex interplay
between different components of the immune
system leading to clearance of an infection, and
(iii) the potential implications of within-host
patterns of cross-immunity on epidemiological
dynamics in populations.

Applying Population Ecology Models
To Study Infection Dynamics

Measuring pathogen loads in infected organ-
isms provides one way to evaluate host-patho-
gen interactions. Is the host controlling or clear-
ing the infection, or is the pathogen overcoming
its host? While a decrease in bacterial load looks
like improved control of the infection, the pat-
terns tend to be more complicated.

For example, a particular treatment may lead
to fluctuations in pathogen loads because of
dynamic underlying processes driving the bacte-
ria, such as cell divisions and deaths as well as
movement among host cells, organs, and tissues.
To a large extent, these are the same processes
governing the growth of any population of liv-
ing organisms. The key differences lie in the
detailed mechanisms responsible for those pro-
cesses during an infection, such as molecular
interactions with the immune system in the case
of pathogens. Hence, models from population
ecology can be adapted to describe some aspects
of infections.

Case Study: Acute Infection
with Salmonella in Mice

The gram-negative bacterial pathogen Salmo-
nella enterica comprises many serovars. S. en-
terica Typhi, for instance, causes typhoid fever
in humans, which is an important public health

threat in developing countries. Although this
disease can be modeled by infecting mice with S.
enterica serovar Typhimurium, little is known
about the population dynamics of the bacteria
within such animals. However, to overcome this
deficit, Pietro Mastroeni at the University of
Cambridge in the United Kingdom and his col-
laborators are using mathematical models along
with sophisticated experimental techniques to
decipher the in vivo dynamics of such infections.

One question that they addressed is how S.
enterica bacteria spread within the organs of
mice. Lesions, consisting mostly of pathogen-
loaded macrophages, form in the liver and the
spleen, increasing both in size and in number
during infection. Confocal microscopy com-
bined with multiple fluorescent markers reveals
that, while the overall bacterial load grows ex-
ponentially, most infected macrophages contain
only one or two bacteria, and small numbers of
macrophage cells harbor very high numbers of
bacteria, even in the late stages of infection.

What leads to this skewed distribution of
intracellular bacteria? Is there intrinsic hetero-
geneity among macrophages or rapid spread of
bacteria from cell to cell that keeps overall bac-
terial numbers per host cell so low? These and
other scenarios were translated into a mathe-
matical model that tracks numbers of bacteria
per macrophage, allowing for intracellular divi-
sion of bacteria and also lysis of infected macro-
phages followed by infections of other host cells.
The best-fit model assumed that (i) all macro-
phages are identical, (ii) resources limit the in-
tracellular division rate of bacteria, and (iii) lysis
of infected macrophages is a stochastic process
that is independent of bacterial numbers.

This modeling approach enabled the Cam-
bridge group to test specific predictions experi-
mentally. Moreover, their findings raised ques-
tions about S. enterica serovar Typhimurium.
Although regarded as an exclusively intracellu-
lar pathogen, their findings suggested that it
becomes extracellular every time that a host cell
bursts, a view that is in line with independent
reports that antibodies are required to clear
attenuated strains of Salmonella in mice.

The Cambridge group then investigated the
global dynamics of infection, measuring levels
of pathogen within whole animals. Earlier stud-
ies indicated that individual bacteria cause le-
sions in organs, suggesting that the clonal ex-
pansion of just a few bacteria might account for
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systemic infections. A related question is
whether the mouse immune system actively kills
bacteria or reduces their growth. In other words,
what is the relative importance of bactericidal
and bacteriostatic processes in the immune de-
fense against S. typhimurium?

To address those questions, the investigators
needed to estimate the division and death rates
of these bacteria and then to monitor their
movements between organs through the blood-
stream of mice. Their novel approach consisted
of first inoculating mice with a mixture of eight
wild-type isogenic tagged strains (WITS) of S.
typhimurium. Each of these strains has identical
phenotypes and differs from any other by a
short insert of 40 nucleotides in a noncoding
region of the chromosome. Then with quantita-
tive PCR, they recorded levels of these WITS in
the organs and the blood of mice at different
times, making it possible to interpret decreases
in strain diversity as killing of bacteria.

With a mathematical model, they next esti-
mated the rates of division, death, and migration
of S. typhimurium in different organs in the first
72 h of infection. This analysis revealed that
bacteria rapidly divide and die for only the first
7 h before reaching a bottleneck in the liver and
spleen, yielding two independent subpopula-
tions that continue to divide at low rates with-
out further dying. Spillover into the blood-
stream is delayed until the second day, and those
cells mix with bacterial populations in the liver
and the spleen. A host NADPH oxidase proves
critical for both the early bactericidal and the
later bacteriostatic stages of immunity, accord-
ing to their similar experiment in which the host
mice were missing gp91 phox.

These studies illustrate how experiments cou-
pled with analysis based on mathematical mod-
els provide insights into processes that are diffi-
cult or impossible to observe directly. This
approach also permits the investigators to inter-
pret their experimental observations with a new
kind of rigor—in this case, leading to findings
that are at odds with previous explanations.

Dynamic Networks Used To Analyze
Immune Responses to Pathogens

Of course, immune system responses are seldom
singular as they affect the dynamics of a bacterial
pathogen during an infection. Moving beyond
analysis of the effects of particular component of

immunity, such as the NADPH oxidase example,
requires a different approach. One such alterna-
tive is called network modeling, exemplified by the
work of Reka Albert and colleagues at Pennsylva-
nia State University. It depends on mathematical
models that integrate information, mainly qualita-
tive, on the many cells and molecules that impinge
on and regulate bacterial infections.

This approach entails compiling different
sources of information to decipher causal rela-
tionships among these many components. These
relationships are constructed into a network.
Components within this network of infection
include the pathogen and its virulence factors as
well as host components such as immune cells,
antibodies, and cytokines. They are linked in
pairwise fashion, in each case specifying what
member of the pair activates or inhibits the
other. This static network is then incorporated
into a dynamic model that tracks quantitative
changes in these different actors during the
course of an infection. Such models are espe-
cially intuitive because they entail converting a
static description of a biological system, much as
one might write on a blackboard, into a fluid
mathematical model.

Case Study: Controlling a
Bordetella Infection in Mice

Bordetellae are gram-negative coccobacilli that in-
fect a range of mammalian species. Bordetella
pertussis, which causes whooping cough in hu-
mans, apparently derived from the progenitor of a
closely related species, B. bronchiseptica, with
which it shares a variety of virulence factors. Al-
though these two species modulate host immune
responses, those effects involve different mecha-
nism. In both cases, immunocompetent hosts can
usually control and clear these pathogens.

Although various Bordetella species infect
mice, none of these infections exactly models
whooping cough in humans. However, they do
provide a means for studying the infectious pro-
cess and interactions between these bacterial
pathogens and host immune responses, includ-
ing time courses of bacterial loads and densities
of immune cells and cytokines. For instance,
various host cell types are recruited to Borde-
tella-infected lungs and can produce cytokines
such as interferon-y (IFN-vy).

To study how the different cell types and
cytokines work in concert to contribute to the
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FIGURE 2
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Features and results from the network model of within-host immune interactions (reproduced from Thakar et al.,
3:e109, 2007). Subnetworks depicting innate immune interactions between host and (a) B. bronchiseptica and (b) B. pertussis virulence
factors. Network nodes denote immune components and virulence factors, and edges represent interactions and processes. The edges are
classified into two regulatory effects, activation and inhibition, and are represented by incoming black arrows and incoming red blunt
segments, respectively. Dynamic behavior of the network is simulated by developing species-specific Boolean models. The wild-type
activation pattern of (a) B. bronchiseptica and (b) B. pertussis is shown. Each colored pattern is a square grid representing the state of the
nodes on the y-axis versus time steps on the x-axis. The colored squares correspond to active nodes (having state 1) at the represented time
step. One time step of the simulation corresponds to 1 d to 2 d of the real infection. Dashed lines represent three stages of infections
“in silico” simulation depicting an earlier clearance of (e) B. bronchiseptica due to the adoptive transfer of
antibodies is contrasted with the no effect on (f) B. pertussis clearance.

~
D B. pertussis || 11l
Ag-Ab complex
Th1RC

Recrulted PMNs

F Antibody treatment

Inhibition of PMNs
recruitment

[PTX

ivated
e

cytic cells

i

123 456 7 8 910111213 14 1516 17 18 19 20 21

123 456 7 8 910111213 14 15 16 17 18 19 20 21

PLoS Computational Biol.

dynamics of the infection proves challenging.
Hence, we have adapted network-modeling ap-
proaches to decipher interactions between and
among immune components and virulence fac-
tors and also to analyze time-dependent contri-
butions of specific immune components (Fig. 2).
The networks, which represent a static picture
of the immune response, were incorporated into
a dynamic model of the sequential events in
lungs during the infection by B. bronchiseptica
or B. pertussis. The model helps to illuminate
three stages of the infection: the first is the innate
immune response, the second is when bacterial
virulence factors modulate the immune re-
sponse, and the third involves highly efficient

immune responses that lead to clearance of the
bacteria. The model delineates when different
immune components contribute to the host re-
sponses, and it helps to portray what happens
when the immune system is perturbed.

The model also depicts differences in the time
course of infections for hosts that previously
encountered the pathogens versus hosts that had
not. For instance, the model predicted that con-
valescent hosts can rapidly clear both patho-
gens, but that antibody transfer would rapidly
clear B. bronchiseptica but not B. pertussis in-
fection. This prediction held up when tested
experimentally. Thus, the model accurately sim-
ulated different immune modulatory effects and
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Features and results from the mathematical model on asymmetric cross-immunity in bordetellae (reproduced from Restif et al., Parasitology
135:1517-1529, 2008). (A) Structure of the model. The human population is divided into compartments representing the status of
individuals: susceptible to both B. pertussis and B. parapertussis (S), vaccinated against B. pertussis and not yet infected (Vp), currently
infected with B. pertussis (primary infection Ip1, secondary infection Ip2), B. parapertussis (lpp1 and Ipp2) or both (Ico), or recovered from
infection and currently immune to B. pertussis only (Rp), B. parapertussis only (Rpp) or both (R). Arrows show possible transitions (thick black
arrows: infection, thin black arrows: recovery, dotted gray arrows: loss of immunity, dashed black arrows: births). (B) Simulated population
dynamics following introduction of anti-pertussis vaccination on year O (vaccine uptake gradually increases from 0 to 75% by year 20 and
then remains constant. Black lines: joint prevalence of B. pertussis (solid line) and B. parapertussis (dashed line). Gray line: prevalence of
B. pertussis in the absence of B. parapertussis. Here vaccination and primary infection with B. pertussis confer the same level of weak
protection against B. parapertussis. (C) Same as panel B, but primary infection with B. pertussis confers stronger cross-protection than
vaccination, resulting in an increase in B. parapertussis prevalence following introduction of vaccination.

pathogenesis, and host adaptations to disease-
causing microorganisms.

outcomes from infections caused by two closely
related bacterial pathogens, each of which pro-
duces similar but distinct virulence factors.
With additional nodes, the model can begin to
account for how different components of the im-
mune system, such as T helper cells, change the
bacterial numbers during such infections. For ex-
ample, dynamics of the network can be different

Modeling Can Help in Understanding
How Infections Spread

For both practical and basic reasons, studies of
infectious diseases in animals tend to focus on

due to the different kinetic parameters of various
immune components, illustrating how much the
immune response varies across different host-
pathogen systems. Moreover, the model reveals
the importance of local versus systemic interac-
tions in the dynamics of immune responses. The
dominance of one T helper cell type over another
depends on local cytokines. The model also sug-
gests that other immune components play a role in
regulating T helper subtypes. This type of model-
ing thus provides a range of insights into virulence,

what happens to the host, without paying much
attention to how pathogens are transmitted be-
tween hosts. Hence, investigators unwittingly
ignore an important part of the life cycle of
pathogens in ways that can be misleading, par-
ticularly when considering the evolution of
pathogens. While host immune responses create
strong selective pressures, other factors may
play critical roles enabling or blocking transmis-
sion of pathogens between hosts. It could prove
valuable to analyze how the dynamics of an
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infection within a single host can affect the
epidemiology of the disease at the population
level. The challenge is to reconcile these two
parts of infection cycles that typically are stud-
ied under very different conditions. In particu-
lar, care is needed when extrapolating from
infected animals to human populations. More-
over, the analytic approaches in microbiology
and epidemiology differ in fundamental ways.
For example, microbiologists measure the effi-
cacy of immunity as a reduction in pathogen
loads in vivo, whereas epidemiologists look for
drops in pathogens that are circulating through
population groups.

Thus, translating pathogen loads within indi-
viduals into rates of transmission within popu-
lations is a matter of guesswork. However,
mathematical models can prove helpful in ad-
dressing this issue. Where empirical information
is missing, they enable investigators to evaluate
a range of scenarios before comparing them to
empirical data or determining what data to seek.

Case Study: Cross-Immunity
among Bordetella Species

What happens when several Bordetella species
infect an individual simultaneously? Do two
similar pathogens compete directly, and is there
cross-immunity? Such questions are matters of
public health interest because B. pertussis and B.
parapertussis circulate freely and cause disease
naturally only in human populations, and they
can coinfect individuals. Meanwhile, the closely
related species, B. bronchiseptica, aparrently
circulates only in animal populations.
However, these three bacterial species can
infect mice under experimentally controlled
conditions. Thus, for example, mice can be se-
quentially infected with B. pertussis and B. para-
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pertussis. When such animals are first infected
with B. parapertussis, this exposure protects
them from subsequent challenges with either
type of pathogen. However, if the mice first are
infected with B. pertussis, the animals develop
only limited cross-protection against subsequent
exposure to B. parapertussis.

Further, the O antigen of B. parapertussis
enables it to evade immunity that the host devel-
ops to B. pertussis. This finding suggests that B.
parapertussis could have a competitive advan-
tage in human populations, raising questions as
to how wide use of the vaccine that protects
humans against B. pertussis affects circulating
B. parapertussis. To address such questions, the
group at Pennsylvania State University devel-
oped a simple epidemiological model that ac-
counts for asymmetric cross-immunity in the
human population, describing it in terms of an
individual’s differential susceptibility to re-in-
fection with either pathogen. Because the re-
ported incidence of B. parapertussis infections is
low compared to B. pertussis, the model as-
sumes that the former pathogen is less fit than
the latter—that is, B. parapertussis has lower
infectivity or a shorter infectious period, com-
pared to B. pertussis.

Use of this model helps to explain how differ-
ent combinations of benefits, such as evasion of
cross-immunity, and costs, such as reduced fit-
ness, allow B. parapertussis to coexist with, but
not outcompete, B. pertussis. Moreover, the
model suggests that vaccinating against B. per-
tussis has little effect on circulating B. paraper-
tussis so long as it evades vaccine-induced im-
munity in the same way as natural immunity.
This prediction holds true when tested in mice,
providing useful feedback between mathemati-
cal models and experiments.
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