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Fig. 4. A, mammalian two-hybrid assays to assess CAR1 interaction with
DAX-1. COS- cells were cotransfected with pmGAL4-CAR1-LBD and
VP16-empty (negative control), VP16-SRC1 (positive control), VP16-
DAX1, or VP16-DAX1 TSD, 3.1 RXRa-LBD, pFR-luciferase reporter, and
pRL-CMV vector for transfection efficiency normalization (left side). On
the right half of the graph, CAR1 was in the VP16 vector, and the test
constructs were in the pmGAL4 vector. B, mammalian two-hybrid assay
to assess the effect of DAX-1 on CAR1-SRC1 interaction. COS-1 cells were
cotransfected with pmGAL4-CAR1 and VP16-SRC1 along with either
VP16-empty, -DAX1, or -DAX1-TSD. The 3.1 RXRa-LBD, pFR-luciferase
reporter, and pRL-CMV vectors were included in all of the transfections.
On the right half of the graph, VP16-CAR1-LBD and pmGAL4-SRC1
were tested in the presence of pmGAL4-empty, -DAX1, or -DAX1-TSD.
Both panels are representative single transfection experiments, with all
of the treatments in quadruplicate, and each data point represents the
mean (S.D.). Asterisks indicate that each treatment was significantly
different from its respective empty vector control (p  0.05).

preparations (E. M. Laurenzana and C. J. Omiecinski, un-
published observations). However, it should be noted that the
pCDH-dCMYV vector used in the transfections contains dual
promoters, with GFP driven by a separate promoter than
DAX-1, and thus the relative efficiencies of expression of
these proteins may be different. In this respect, the Ct values
obtained for DAX-1 expression clearly demonstrated DAX-1
overexpression in the cultured cells. Real-time polymerase
chain reaction analyses of the respective hepatocyte cDNAs
showed that DAX-1 expression attenuated CAR-mediated
induction of CYP2B6 by CITCO in all of the donors, with the
extent of CYP2B6 inhibition ranging from 18 to 92% across
individual hepatocyte cultures.

Effect of CAR Activation on DAX-1 Expression in
Primary Human Hepatocytes. To assess whether CAR ac-
tivation induces hepatic DAX-1 expression, untransfected pri-
mary human hepatocytes were treated with prototypical CAR
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Fig. 5. Direct interaction between CAR1 and DAX-1. AlphaScreen assay
for CAR1 interaction with DAX-1 (A). Purified CAR1-LBB and DAX-1-
GST (40 nM each) were incubated in the presence of 5 pg/ml donor and
acceptor beads. The DAX-1a construct contains amino acids 210 to 470
and DAX-1b contains amino acids 218 to 470. Bars represent the mean
(S.D.) of two separate experiments, each performed in duplicate. Rep-
resentative coimmunoprecipitation of CAR1 and DAX1 (B). COS-1 cells
were cotransfected with pCMV6-DAX1 and p3XFLAG CAR or 3XFLAFG
empty. After 40 h, the cells were treated with DMSO, CITCO, ANDRO,
or PB for 5 to 6 h and then harvested. Cell lysates were immunoprecipi-
tated with anti-FLAG beads, and precipitated protein was subjected to
Western blot analysis with anti-DAX1 antibody, followed by anti-FLAG
antibody. C, densitometry analysis of the Western blot data.

(PB and CITCO) or CAR2 (DEHP) activators for 24 h and
assessed quantitatively for levels of DAX-1 mRNA expression.
Four separate hepatocyte donors were tested, but in no case
was DAX-1 induction detected by these treatments (E. M. Lau-
renzana and C. J. Omiecinski, unpublished observations).
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TABLE 3
Human hepatocyte donor information
Donor ID Sex Age Source Disease or Cause of Death Chemotherapy
1911 M 14 Surgical Resection Unknown Unknown
1930 M 60 Surgical Resection Metastatic adenocarcinoma Yes
1938 F 49 Surgical Resection Metastatic colon cancer Yes
1948 F 60 Surgical Resection Metastatic cancer origin unknown Unknown
1967 M 25 Donor Drug overdose No
ID, identification; M, male; F, female.
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Screening a panel of peptides containing different LXXLL
motifs (or NR boxes) led to the identification of DAX-1 as a
potential CAR-interacting protein and repressor of CAR tran-
scriptional activity. DAX-1 has been most clearly characterized
for its role in human development, because mutations in the
gene are associated with both X-linked congenital adrenal hy-
poplasia and hypogonadotropic hypogonadism (Zanaria et al.,
1994; Tabarin et al., 2000). More recently, a role for DAX-1 as a
regulator of liver physiology has emerged, with its reported
activity as a corepressor of hepatocyte nuclear factor 4«
(HNF4«) and liver X receptor (LXR) resulting in negative reg-
ulation of gluconeogenic pathways (Nedumaran et al., 2009)

though DAX-1 exhibited the highest degree of homology with
the detected CAR-interacting peptide, we also examined SHP,
because they belong to the same NR subfamily (Ehrlund and
Treuter, 2012) and, like CAR, SHP is expressed in the liver and
was demonstrated previously to interact with mouse CAR (Bae
et al., 2004; Park et al., 2004). Furthermore, DAX-1 and SHP
both lack a traditional NR DBD, contain LXXLL NR interaction
motifs otherwise found in nuclear coactivators, and act as tran-
scriptional corepressors of ligand-activated NRs (Ehrlund and
Treuter, 2012). Despite these similarities, our results demon-
strate that DAX-1 is a much more potent repressor of human
CARI activity than is SHP.
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Similar to SHP (Lee et al., 2000), DAX-1 likely functions
through two different protein interaction mechanisms for the
repression of NR activity. The first is based on the four NR
boxes in the DAX-1 sequence. The three NR boxes localized in
its N-terminal region are analogous to the LXXLL motifs
commonly found in NR coactivators. A fourth sequence,
PCFQVLP, is thought to mimic the LXXLL motifs and forms
the interface for the interaction with the AF-2 domain of
LRH-1 (Sablin et al., 2008). It is interesting to note that SHP
also contains a similar PSFCHLP sequence, although no
functional relevance has been demonstrated (Ehrlund and
Treuter, 2012). These four DAX-1 NR boxes allow for compe-
tition with coactivators. A second mechanism mediating
DAX-1 repression lies with a C-terminal transcription silenc-
ing domain (TSD). The TSD allows for the recruitment of
transcriptional corepressors such as NCoR (Crawford et al.,
1998), SMRT (Agoulnik et al., 2003), and Alien (Altincicek et
al., 2000).

We further tested CAR1 and its splice variants, CAR2 and
CARS3, for differences in their interactions with DAX-1. For
CAR1, CAR2, and CAR3, mutation of the first two NR boxes
(M1 and M2, Fig. 1) had no effect on DAX-1 repression of
CAR activity, whereas mutation of the third NR box and the
atypical PCFVQLP NR box (M3 and PCF, Fig. 1) inhibited
DAX-1’s repression of CAR activity by approximately 50 to
75%. The results also suggested that the third NR box inter-
acted more strongly with CAR2 and CAR3 than with wild-
type CAR1. These differences may stem from conformational
changes in the CAR variant proteins resulting from amino
acid insertions in their sequences (Auerbach et al., 2003).
Nevertheless, the third LXXLL and the PCFQVLP NR boxes
of DAX-1 were the most critical in mediating the functional
interaction with CAR. It is interesting to note that deletion of
DAX-1’s TSD restored CAR1 activity to control levels,
whereas the comparative activities of CAR2 and CAR3 were
only restored to approximately 65% of control. Therefore,
these results suggest that: 1) the third LXXLL and the
PCFQVLP NR boxes of DAX-1 are the principal effectors of
coactivator competition and interaction with CAR and 2)
DAX-1 competition with coactivators may be more for CAR2
and CAR3 than CARIL.

Initial mammalian two-hybrid studies failed to detect a
direct interaction between CAR1 and DAX-1. Explanations
for this result may implicate another “bridging” protein re-
quired for the interaction and/or that the intrinsic repressor
effects from the T'SD of DAX-1 are blocking activation of the
GALA4 reporter in these assays. The latter possibility appears
likely, because the basal activity generated with pm-CAR1
and VP16-empty was repressed in the pm-CAR1:VP16-
DAX-1 assay (Fig. 4A, left). To address whether TSD was
masking the detection of the CAR1-DAX-1 interaction, a
DAX-1-TSD construct was used in the mammalian two-hy-
brid assays. The basal activity of pm-CAR1 was partially
restored with VP16-DAX-1-TSD. We further tested DAX-1
and DAX-1-TSD in a mammalian two-hybrid competition
assay with CAR1 and SRC1. Although intact DAX-1 inhib-
ited the CAR1-SRC1 interaction 50 to 75% depending on the
vector orientation, DAX-1-TSD was not as efficient. In sum-
mary, these results support the concept that competition
with SRC1 and the intrinsic transcription repressor domain
are both important mechanisms in DAX-1 repression of CAR
transcriptional activity. However, the results did not clarify

whether a direct interaction existed between CAR1 and
DAX-1.

In these respects, both AlphaScreen and coimmunoprecipi-
tation experiments clearly indicated a direct interaction be-
tween these proteins. Furthermore, in both assays the CAR1-
DAX-1 direct interaction was enhanced by the presence of the
ligand CITCO, which is consistent with known functions of
DAX-1 acting as a repressor of ligand-activated receptors. In
general, corepressors bind to NRs in the absence of ligand
(Perissi et al., 1999). Although CARI1 is “constitutively ac-
tive” in vitro, binding of the inverse agonist ANDRO favors
the recruitment of the corepressor SMRT (Dussault et al.,
2002). Thus, although SMRT or other corepressors help to
regulate activity of “unactivated” CAR, DAX-1 serves to re-
press the activity of CAR1 as well as the ligand-activated
variants of the receptor, CAR2 and CAR3. In this manner,
DAX-1 may provide another level through which CAR activ-
ity is fine-tuned.

In vivo, CAR is a hepatic “xenosensor” that upon chemical
activation translocates to the nucleus where it facilitates the
transcription of genes encoding xenobiotic metabolism and
transport (Timsit and Negishi, 2007). CYP2B6 is a prototyp-
ical phase I gene activated by CAR in human liver (Honkako-
ski et al.,, 2003). The current studies demonstrated that
DAX-1 can mediate CAR transcriptional activity in primary
human hepatocytes, with the overexpression of DAX-1 re-
sulting in decreased CAR-mediated induction of CYP2B6 in
CITCO-treated cells. Given the interindividual differences
noted in inducer responsiveness among humans (Dekeyser et
al., 2009), the degree of CYP2B6 induction in CITCO-treated
cultures was variable among donors, as was the extent of
DAX-1 repression. In general, greater levels of CYP2B6 re-
pression were observed in donors that were most responsive
to CITCO induction. Differential xenobiotic responsiveness
among humans likely results from a complex interplay of
genetics, previous chemical exposures, and perhaps differ-
ences in the expression profiles of the xenobiotic receptors
that mediate these responses. Because CAR activation in the
liver mediates the induction of xenobiotic metabolic enzymes
and transporters, DAX-1 repression may contribute to the
etiology of adverse drug reactions in select individuals.

Although the physiological implications of DAX-1 repres-
sion of hepatic CAR activity are currently unclear, DAX-1
appears to negatively regulate hepatic gluconeogenesis and
lipogenesis in mice (Nedumaran et al., 2009, 2010). These
reports demonstrated that hepatic DAX-1 expression is mod-
ulated by insulin and nutritional status and that DAX-1
repressed the transcriptional activity of HNF4«, a transcrip-
tion factor known to positively regulate gluconeogenic en-
zymes (Nedumaran et al., 2009). Furthermore, adenoviral-
mediated overexpression of DAX-1 in mice fed a high-fat diet
significantly reduced fasting blood-glucose levels. In another
study, DAX-1 was shown to repress hepatic LXR« transcrip-
tional activity, resulting in decreased in expression of
SREBP-1c¢, a transcription factor that mediates the expres-
sion of lipogenic enzymes, as well as decreased liver triglyc-
eride levels (Nedumaran et al., 2010). It is interesting to note
that CAR activation decreases lipogenesis in mouse models
fed a high-fat diet, and different, but perhaps interrelated,
mechanisms have been proposed for this effect. CAR activa-
tion induces the expression of Insig-1, which in turn re-
presses the activation of SREBP-1¢, resulting in decreased
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expression of lipogenic enzymes (Roth et al., 2008). Another
study outlined an indirect mechanism whereby CAR-medi-
ated induction of SULT2B1b results in the inactivation of
LXRa oxysterol agonists, in turn causing decreased activa-
tion of SREBP-1c by LXRa (Dong et al., 2009). Furthermore,
CAR activation also has been shown to suppress the expres-
sion of gluconeogenic enzymes in mouse models, resulting in
improved antidiabetic effects (Dong et al., 2009). Given these
observations, DAX-1 antagonism of CAR activity in the liver
would be predicted to have opposing effects compared with
DAX-1 antagonism of hepatic HNF4« and LXRa. Thus, it is
conceivable that DAX-1 binds to CAR or HNF4a and LXRa
preferentially, based on nutritional status and perhaps the
ligand bound to the receptor. Future studies are required to
sort out the complex NR-mediated regulatory mechanisms
controlling hepatic lipogenesis and gluconeogenesis.

Given that DAX-1 and SHP share structural and func-
tional similarities (Ehrlund and Treuter, 2012) and that he-
patic SHP expression is induced by bile acid-activated farne-
soid X receptor, ultimately down-regulating bile acid and
fatty acid synthesis (Lee et al.,, 2007), we investigated
whether CAR activation might induce DAX-1 expression in
primary human hepatocytes. After 24 h of treatment with
CAR agonists, no induction of DAX-1 expression was ob-
served (E. M. Laurenzana and C. J. Omiecinski, unpublished
observations); however, it is intriguing to speculate that
DAX-1 may be induced by a downstream metabolic product to
mediate CAR activity.

Another tissue in which DAX-1-mediated repression of
CAR activity may be important is the adrenal gland. DAX-1
is highly expressed in the adrenal gland, and mutations in
DAX-1 result in adrenal hypoplasia congenita (for a review,
see Lalli and Sassone-Corsi, 2003; Niakan and McCabe,
2005). Relatively high levels of CAR1 and CAR variants also
are detected in the adrenal gland (Savkur et al., 2003; Arnold
et al., 2004; Lamba et al., 2004), although a physiologic role
in adrenal function has not been identified. However, a glu-
cocorticoid response element has been identified in the CAR
promoter sequence, and studies in human hepatocytes dem-
onstrated that activated GR induces CAR expression (Pas-
cussi et al., 2000, 2003). Furthermore, DAX-1 is known to
repress ligand-activated GR transactivation (Zhou et al.,,
2008). Thus, it seems likely that interactions of DAX-1, CAR,
and GR in the adrenal gland may influence glucocorticoid
homeostasis; however, additional studies are necessary to
explore these interactions.

This study demonstrates for the first time that DAX-1 func-
tions as a corepressor for activated human CAR and its splice
variants CAR2 and CARS3. These effects are likely mediated
through competition with coactivators, such as SRC1, and via
the intrinsic TSD of DAX-1, which is responsible for the recruit-
ment of corepressors. Although the physiological implications of
the CAR-DAX-1 interaction are yet to be determined, DAX-1-
mediated repression of CAR transcriptional activity represents
an additional level through which CAR activity may be pre-
cisely regulated in liver hepatocytes.
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